
Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-0336

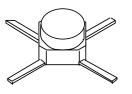
MSA-0336

>6V Fixed Gain, 10 dBm General Purpose Amplifier

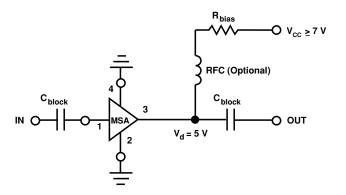
MSA-0336 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description


The MSA-0336 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz $f_{T}, 25~{\rm GHz}~f_{MAX},$ silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.7 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- 10.0 dBm Typical P_{1dB} at 1.0 GHz
- Unconditionally Stable (k>1)
- Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

MSA-0336 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	80 mA
Power Dissipation ^[2,3]	425 mW
RF Input Power	+13 dBm
Junction Temperature	150°C
Storage Temperature ^[4]	-65 to 150°C

Thermal Resistance^[2,5]:

 $\theta_{jc} = 150^{\circ}C/W$

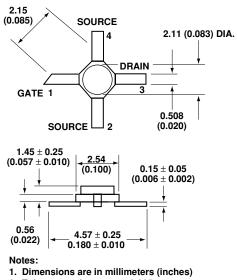
Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{\rm CASE}$ = 25°C.
- 3. Derate at 6.7 mW/°C for $T_C > 136$ °C.
- 4. Storage above +150 $^{\circ}{\rm C}$ may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods.

Electrical Specifications^{[1]}, $T_{A}=25^{\circ}C$

Symbol	Parameters and Test Conditions: \mathbf{I}_{d} = 35 mA, \mathbf{Z}_{0} = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	11.5	12.5	13.5
ΔG_P	Gain Flatness	f = 0.1 to 1.6 GHz	dB		±0.6	±1.0
$f_{3 dB}$	3 dB Bandwidth		GHz		2.7	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.6:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.7:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		6.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		10.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		23.0	
tD	Group Delay	f = 1.0 GHz	psec		125	
Vd	Device Voltage		V	4.5	5.0	5.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:


1. The recommended operating current range for this device is 20 to 50 mA. Typical performance as a function of current is on the following page.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0336-BLKG	100	Bulk		
MSA-0336-TR1G	1000	7" Reel		

2

36 micro-X Package Dimensions

2. Tolerances: in .xxx = \pm 0.005

mm .xx = \pm 0.13

